Introduction
- Single Hop System, \(L\) Queues
- \(Q_l(t=1)=(Q_l(t)+A_l(t)-S_l(t))^+=Q_l(t)+A_l(t)-S_l(t)+U_l(t)\)
- \(U_l(t)=\max\{0,S_l(t)-A_l(t)-Q_l(t)\}\)
\(A_1(t),A_2(t),Q_1(t),Q_2(t),\mu_1(t),\mu_2(t)\)
\(~\)
Consider, general functions \(f\) and \(g\), the Wasserstein distance is \[\min_{\text{all map }T}\{\sum_{\text{all movements of }T}\text{distance moved}\times\text{amount moved}\}\] For \(f:X\rightarrow{}R^+,g:Y\rightarrow{}R^+\), the distance can be formulated as \[W_p(f,g)=\left(\inf_{T\in\mathcal{M}}\int{}|x-T(x)|^pf(x)dx\right)^{1/p}\] where \(\mathcal{M}\) is the set of all maps that rearrange the distribution \(f\) into \(g\).
A set \(\mathcal{C}\) is closed if it contains its boundary: \[x^k\in\mathcal{C},x^k\rightarrow\bar{x}\Rightarrow\bar{x}\in\mathcal{C}\]
\(g\) is a subgradient of a convex function \(f\) at \(x\in{}dom~f\) if \[f(y)\geq{}f(x)+g^\top(y-x)\quad\text{for all }y\in{}dom~f\]
\[\text{(P) }\min_xc^Tx,s.t.Ax=b,x\geq0\] \[\text{(D) }\min_yb^Ty,s.t.A^Ty+s=c,s\geq0\]
\[c^Tx=b^T\Leftrightarrow{}x^Ts=0\Leftrightarrow{}x_is_i=0\]
产品从故障开始到修理完毕经历的时间 \(Y\) \[M(t)=P(Y\leq{}t)\]
尚未修复的产品在单位时间内修复完成 \[\mu(t)=\frac{m(t)}{1-M(t)}\]
\[MTTR=\int_0^\infty{}tm(t)dt=\int_0^\infty{}tdM(t)\]
\[\min{}f_0(x),s.t.f_i(x)\leq0,h_i(x)=0\] variable \(x\in{}R^n\), domain \(\mathcal{D}\), optimal value \(p^\star\) \[L:R^n\times{}R^m\times{}R^p\rightarrow{}R,dom~L=\mathcal{D}\times{}R^m\times{}R^p\] \[L(x,\lambda,\nu)=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^p\nu_ih_i(x)\]