Lagrange dual problem
Lagrangian
\[\min{}f_0(x),s.t.f_i(x)\leq0,h_i(x)=0\] variable \(x\in{}R^n\), domain \(\mathcal{D}\), optimal value \(p^\star\) \[L:R^n\times{}R^m\times{}R^p\rightarrow{}R,dom~L=\mathcal{D}\times{}R^m\times{}R^p\] \[L(x,\lambda,\nu)=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^p\nu_ih_i(x)\]