Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

Closed

Closed set

A set \(\mathcal{C}\) is closed if it contains its boundary: \[x^k\in\mathcal{C},x^k\rightarrow\bar{x}\Rightarrow\bar{x}\in\mathcal{C}\]

  • the intersection of closed sets is closed
  • the union of a finite number of closed sets is closed
  • inverse under linear mapping \[\{x|Ax\in\mathcal{C}\}\] is closed if \(\mathcal{C}\) is closed

Closed function

a function is closed if its epigraph is a closed set or if all its sublevel set is a closed set

  • If \(f\) is continuous and \(dom~f\) is closed, then \(f\) is closed
  • If \(f\) is continuous and \(dom~f\) is open, then \(f\) is closed iff it converges to \(\infty\) along every sequence converging to a boundary point of \(dom~f\)

Properties

  • sublevel sets: \(f\) is closed iff all its subsevel sets are closed
  • minimum: if \(f\) is closed with bounded sublevel sets then it has a minimizer

Conjugate function

Conjugate functions: recall

  • the conjugate of a function \(f\) is always closed and convex
  • The indicator function of convex set \(\mathcal{C}\): conjugate is support function of \(\mathcal{C}\)
  • Norm: conjugate is indicator of unit dual norm ball

Second conjugate

\[f^{**}(x)=\sup_{y\in{}dom~f^*}(x^\top{}y-f^*(y)))\]

  • \(f^{**}\) is closed and convex
  • \(f^{**}\leq{}f(x)\)
  • if \(f\) is closed and convex, then \(f^{**}\leq{}f(x)\)

Calculus rules

Separable sum

\[f(x_1,x_2)=g(x_1)+h(x_2),f^*(y_1,y_2)=g^*(y_1)+h^*(y_2)\]

Scalar multiplication

\[\alpha{}>0,f(x)=\alpha{}g(x),f^*(y)=\alpha{}g^*(y/\alpha{})\]

Addition to affine function

\[f(x)=g(x)+a^\top+b,f^*(y)=g^*(y-a)-b\]

Infimal convolution

\[f(x)=\inf_{u+v=x}(g(u)+h(v)),f^*(y)=g^*(y)+h^*(y)\]

Proximal mapping

Definition: the proximal mapping of a closed convex function \(f\) is: \[\text{prox}_f(x)=\arg\min_u\left(f(u)+\frac{1}{2}||u-x||_2^2\right)\]

Example

\[u=\text{prox}_f(x)\Leftrightarrow{}0\in\partial{}f(u)+u-x\Leftrightarrow{}x-u\in\partial{}f(u)\Leftrightarrow{}f(z)\geq{}f(u)+(x-u)^\top(z-u)\] If \(f(x)=\delta_C(x)\), \(C\) is closed and convex \(\Rightarrow{}(x-u)^\top(z-u)\leq0\)

Calculus rules

\[f(x)=\lambda{}g(x/\lambda)\Rightarrow{}\text{prox}_f(x)=\lambda\text{prox}_{\lambda^{-1}g}(x/\lambda)\]

Proof

\[\text{prox}_f(x)=\arg\min_y\{f(y)+\frac{1}{2}||y-x||^2\}=\arg\min_{y,z}\{\lambda{}g(z)+\frac{1}{2}||\lambda{}z-x||_2^2\left|z=\frac{y}{\lambda}\}\right.\] \[L(y,z;\mu)=\lambda{}g(z)+\frac{1}{2}||\lambda{}z-x||_2^2+<\lambda{}z-y,\mu>\] \[\partial_yL=0,\partial_zL=0\Rightarrow{}z=\text{prox}_{\lambda^{-1}g}(x/\lambda)\]

Moreau decomposition

\[x=\text{prox}_f(x)+\text{prox}_{f^*}(x)\quad{}\text{for all }x\]

Composition with affine mapping

  • for general \(A\), prox-operator of \(f\) does not follow easily from prox-operator of \(g\)
  • however, if \(AA^\top=(1/\alpha)I\)

\[f(x)=g(Ax+b)\Rightarrow{}\text{prox}_f(x)=x-\alpha{}A^\top(Ax+b-\text{prob}_{\alpha^{-1}g}(Ax+b))\]

Projections

Affine sets

\(C=\{x|Ax=b\}\), with \(A\in{}R^{p\times{}n}\) and \(\textbf{rank}(A)=p\) \[P_C(x)=x+A^\top(AA^\top)^{-1}(b-Ax)\] inexpensive if \(p\ll{}n\), or \(AA^\top=I\)

Simple polyhedral sets

Halfspace

\(C=\{x|a^\top{}x\leq{}b\}\) \[P_C(x)=x+\frac{b-a^\top{}x}{||a||_2^2}a\quad\text{if }a^\top{}x>b,\quad{}P_C(x)=x\quad\text{if }a^\top{}x\leq{}b\]

Probability simplex

\(C=\{x|\textbf{1}^\top{}x=1,x\succeq0\}\) \[P_C(x)=(x-\lambda\textbf{1})_{+}\] where \(\lambda\) is the solution of the equation \[\textbf{1}^\top(x-\lambda\textbf{1})_{+}=\sum_{i=1}^n\max\{0,x_k-\lambda\}=1\]

Support function, Norm and Distance

Support function

  • conjugate of support function of closed convex set is indicator function

\[f(x)=\sup_{y\in{}C}x^\top{}y,f^*(y)=\delta_C(y)\]

  • prox-operator of support function follows from Moreau decomposition

\[\text{prox}_{tf}(x)=x-t\text{prox}_{t^{-1}f^*}(x/t)=x-tP_C(x/t)\]

Norm

  • conjugate of norm is indicator function of dual norm

\[f(x)=||x||,f^*(y)=\delta_B(y),B=\{y|~||y||_*\leq1\}\]

  • prox-operator of norm follows from Moreau decomposition

\[\text{prox}_{tf}(x)=-P_{tB}(x)\]

Euclidean distance to a set

\[d(x)=\inf_{y\in{}C}||x-y||_2\] \[\text{prox}_{td}(x)=\left\{\begin{aligned}&x+\frac{t}{d(x)}(P_C(x)-x)&d(x)\geq{}t\\&P_C(x)&~\text{otherwise}\end{aligned}\right.\]