Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

Convert LP to a Standard Form

\[\min{}c^\top{}x,\text{subject to }Ax=b\land{}x\geq0\]

For Inequality

  • \(x+y\geq{}a\rightarrow{}x+y-z=a,z\geq0\)
  • \(x+y\leq{}a\rightarrow{}x+y+s=a,s\geq0\)
  • Unrestricted \(\rightarrow{}x=y-z,y\geq0,z\geq0\)

Preview of Simplex Algorithm

Basic solutions

\[Ax=b,A\in{}R^{m\times{}n},x\in{}R^n,n\geq{}m\] Set \(n-m\) variables to \(0\) and solving for the remaining \(m\) variables.
The columns for the remaining \(m\) variables are linear independent.
\[\text{Total number: }C_n^m\]

Basic feasible solutions

  • Feasible region for any LP problem is a convex set
  • If a LP has an optimal solution, there must be an extreme point of the feasible region that is optimal

Proof

\[\text{Suppose }x^\star=\sum_{i=1}^n\alpha_ix_i\text{ is an optimal solution}\] \[c^\top{}x^\star=c^\top{}\sum_{i=1}^n\alpha_ix_i>\sum_{i=1}^n\alpha_ic^\top{}x^\star=c^\top{}x^\star\]

Adjacent Basic Feasible Solutions

Two basic feasible solutions are said to be adjacent if their sets of basic variables have \(m-1\) basic variables in common

General Description of the Simplex Algorithm

  1. Find an initial bfs of LP
  2. Change bfs to its adjacent bfs
  3. Recalculate by Gaussian elimination
  4. For maximum, until the first row is all nonnegative; For minimum, until the first row is all nonpositive

Example

Standard form: \[\max{}z=3x_1+5x_2\] \[\begin{split} \text{subject to }\quad{}x_1+s_1&=8\\ 2x_2+s_2&=12\\ 3x_1+4x_2+s_3&=36\\ x_1,x_2,s_1,s_2,s_3&\geq0 \end{split} \label{p1s}\]

Choose \((s_1,s_2,s_3)\) as BFS, we have table:

\(z\) \(x_1\) \(x_2\) \(s_1\) \(s_2\) \(s_3\) rhs Basic Variable
1 -3 -5 0 0 0 0 \(z=0\)
0 1 0 1 0 0 8 \(s_1=8\)
0 0 2 0 1 0 12 \(s_2=12\)
0 3 4 0 0 1 36 \(s_3=36\)

Choose \((s_1,x_2,s_3)\) as BFS, we have table:

\(z\) \(x_1\) \(x_2\) \(s_1\) \(s_2\) \(s_3\) rhs Basic Variable
1 0 0 0 2.5 0 30 \(z=30\)
0 1 0 1 0 0 8 \(s_1=8\)
0 0 1 0 0.5 0 6 \(x_2=6\)
0 3 0 0 -2 1 12 \(s_3=12\)

Choose \((s_1,x_2,x_1)\) as BFS, we have table:

\(z\) \(x_1\) \(x_2\) \(s_1\) \(s_2\) \(s_3\) rhs Basic Variable
1 0 0 0 0.5 0 42 \(z=42\)
- - - - - - - -
0 0 1 0 0.5 0 12 \(x_2=6\)
0 1 0 0 -2/3 1/3 4 \(x_1=4\)

So the final result is \[x_1=4,x_2=6,z_{max}=42\]

Degeneracy

An LP is degenerate if it has at least one basic feasible solution in which a basic feasible variable is equal to \(0\)

  • pivoting may not improve the objective value
  • simplex method may end up in cycles

Two BFS Methods

Big M Method

\[\min{}f(x),\text{ subject to }Ax=b(b\succeq0)\] \[\Rightarrow\min{}f(x)+M^\top{}a,\text{ subject to }Ax+Ia=b\]

Introduce \(a_i\) to every row which has a negative coefficient (on \(s\) or \(z\)), then we can get bfs easily

\[(x=0,a=b)\]

If we can't reduce all parameters of \(a\) to 0, then the original problem is infeasible

Two-Phase Method

\[\min{}f(x),\text{ subject to }Ax=b(b\succeq0)\] \[\Rightarrow\min{}I^\top{}a,\text{ subject to }Ax+Ia=b,a\succeq0\] If \(a^\star\neq0\), then the original problem is infeasible